

CHAPTER - 2

EQUATIONS

LEARNING OBJECTIVES

After studying this chapter, you will be able to:

- Understand the concept of equations and its various degrees linear, simultaneous, quadratic and cubic equations;
- Know how to solve the different equations using different methods of solution; and
- Know how to apply equations in co-ordinate geometry.

2.1 INTRODUCTION

Equation is defined to be a mathematical statement of equality. If the equality is true for certain value of the variable involved, the equation is often called a conditional equation and equality sign '=' is used; while if the equality is true for all values of the variable involved, the equation is called an identity.

For Example:
$$\frac{x+2}{3} + \frac{x+3}{2} = 3$$
 holds true only for x=1.

So it is a conditional. On the other hand, $\frac{x+2}{3} + \frac{x+3}{2} = \frac{5x+13}{6}$ is an identity since it holds for all values of the variable x.

Determination of value of the variable which satisfies an equation is called solution of the equation or root of the equation. An equation in which highest power of the variable is 1 is called a Linear (or a simple) equation. This is also called the equation of degree 1. Two or more linear equations involving two or more variables are called *Simultaneous Linear Equations*. An equation of degree 2 (highest Power of the variable is 2) is called *Quadratic equation* and the equation of degree 3 is called *Cubic Equation*.

For Example: 8x+17(x-3) = 4 (4x-9) + 12 is a Linear equation

 $3x^2 + 5x + 6 = 0$ is a quadratic equation.

 $4x^3 + 3x^2 + x-7 = 1$ is a Cubic equation.

x+2y = 1, 2x+3y = 2 are jointly called simultaneous equations.

2.2 SIMPLE EQUATION

A simple equation in one unknown x is in the form ax + b = 0.

Where a, b are known constants and a 10

Note: A simple equation has only one root.

Example: $\frac{4x}{3} - 1 = \frac{14}{15}x + \frac{19}{5}$.

Solution: By transposing the variables in one side and the constants in other side we have

$$\frac{4x}{3} - \frac{14x}{15} = \frac{19}{5} + 1 \quad \text{or} \frac{(20 - 14)x}{15} = \frac{19 + 5}{5} \quad \text{or} \quad \frac{6x}{15} = \frac{24}{5}.$$
$$x = \frac{24x15}{5x6} = 12$$

Exercise 2 (A)

Choose the most appropriate option (a) (b) (c) or (d)

The equation -7x + 1 = 5-3x will be satisfied for x equal to: 1. a) 2 b) -1 c) 1 d) none of these The Root of the equation $\frac{x+4}{4} + \frac{x-5}{3} = 11$ is 2. a) 20 b) 10 c) 2 d) none of these Pick up the correct value of x for $\frac{x}{30} = \frac{2}{45}$ 3. c) $x=1\frac{1}{3}$ b) x=7 a) x= 5 d) none of these The solution of the equation x + 244. d) none of these a) 6 b) 10 c) 16 8 is the solution of the equation 5. b) $\frac{x+4}{2} + \frac{x+10}{9} = 8$ a) $\frac{x+4}{4} + \frac{x-5}{3} = 11$ c) $\frac{x+24}{5} = 4 + \frac{x}{4}$ d) $\frac{x-15}{10} + \frac{x+5}{5} = 4$ The value of y that satisfies the equation $\frac{y+11}{6} - \frac{y+1}{9} = \frac{y+7}{4}$ is 6. d) $-\frac{1}{7}$ b) 7 c) 1 a) –1 The solution of the equation (p+2)(p-3) + (p+3)(p-4) = p(2p-5) is 7. a) 6 b) 7 c) 5 d) none of these The equation $\frac{12x+1}{4} = \frac{15x-1}{5} + \frac{2x-5}{3x-1}$ is true for 8. a) x=1 c) x=5 d) x=7 b) x=2

MATHS

9. Pick up the correct value x for which $\frac{x}{0.5} - \frac{1}{0.05} + \frac{x}{0.005} - \frac{1}{0.0005} = 0$

a) x=0 b) x=1 c) x=10 d) none of these

Illustrations:

1. The denominator of a fraction exceeds the numerator by 5 and if 3 be added to both the fraction becomes $\frac{3}{4}$. Find the fraction

Let x be the numerator and the fraction be $\frac{x}{x+5}$. By the question $\frac{x+3}{x+5+3} = \frac{3}{4}$ or 4x+12 = 3x+24 or x = 12The required fraction is $\frac{12}{17}$.

2. If thrice of A's age 6 years ago be subtracted from twice his present age, the result would be equal to his present age. Find A's present age.

Let x years be A's present age. By the question

```
2x-3(x-6) = x
or 2x-3x+18 = x
or -x+18 = x
or 2x = 18
or x=9
```

- \therefore A's present age is 9 years.
- 3. A number consists of two digits the digit in the ten's place is twice the digit in the unit's place. If 18 be subtracted from the number the digits are reversed. Find the number.

Let x be the digit in the unit's place. So the digit in the ten's place is 2x. Thus the number becomes 10(2x)+x. By the question

$$20x+x-18 = 10x + 2x$$

or $21x-18 = 12x$
or $9x = 18$
or $x = 2$

So the required number is $10(2 \times 2) + 2 = 42$.

4. For a certain commodity the demand equation giving demand 'd' in kg, for a price 'p' in rupees per kg. is d = 100 (10 - p). The supply equation giving the supply s in kg. for a price

p in rupees per kg. is s = 75(p - 3). The market price is such at which demand equals supply. Find the market price and quantity that will be bought and sold.

Given d = 100(10 - p) and s = 75(p - 3).

Since the market price is such that demand (d) = supply (s) we have

100
$$(10 - p) = 75 (p - 3)$$
 or $1000 - 100p = 75p - 225$
or $-175p = \therefore p = \frac{-1225}{-175} = 7$.

So market price of the commodity is Rs. 7 per kg.

 \therefore the required quantity bought = 100 (10 - 7) = 300 kg. and the quantity sold = 75 (7 - 3) = 300 kg.

Exercise 2 (B)

Choose the most appropriate option (a) (b) (c) (d)

1.	The sum of two	numbers	is 52	and their	difference is 2.	The numbers are
	a) 17 and 15	b) 12 an	d 10		c) 27 and 25	d) none of these

- 2. The diagonal of a rectangle is 5 cm and one of at sides is 4 cm. Its area is
 - a) 20 sq.cm. b) 12 sq.cm. c) 10 sq.cm. d) none of these
- 3. Divide 56 into two parts such that three times the first part exceeds one third of the second by 48. The parts are.

a) (20,36) b) (25,31) c) (24,32) d) none of these

4. The sum of the digits of a two digit number is 10. If 18 be subtracted from it the digits in the resulting number will be equal. The number is

a) 37 b) 73 c) 75 d) none of these numbers.

- 5. The fourth part of a number exceeds the sixth part by 4. The number is
 - a) 84 b) 44 c) 48 d) none of these
- 6. Ten years ago the age of a father was four times of his son. Ten years hence the age of the father will be twice that of his son. The present ages of the father and the son are.

a) (50,20) b) (60,20) c) (55,25) d) none of these

- 7. The product of two numbers is 3200 and the quotient when the larger number is divided by the smaller is 2.The numbers are
 - a) (16,200) b) (160,20) c) (60,30) d) (80,40)
- 8. The denominator of a fraction exceeds the numerator by 2. If 5 be added to the numerator the fraction increases by unity. The fraction is.

5	1	7	3
a) $\frac{1}{7}$	b) $\frac{-}{3}$	c) <u>-</u> 9	d) $\frac{-}{5}$

MATHS

- 9. Three persons Mr. Roy, Mr. Paul and Mr. Singh together have Rs. 51. Mr. Paul has Rs. 4 less than Mr. Roy and Mr. Singh has got Rs. 5 less than Mr. Roy. They have the money as.
 - a) (Rs. 20, Rs. 16, Rs. 15) c) (Rs. 25, Rs. 11, Rs. 15) b) (Rs. 15, Rs. 20, Rs. 16) d) none of these
- 10. A number consists of two digits. The digits in the ten's place is 3 times the digit in the unit's place. If 54 is subtracted from the number the digits are reversed. The number is
 - a) 39 b) 92 c) 93 d) 94
- 11. One student is asked to divide a half of a number by 6 and other half by 4 and then to add the two quantities. Instead of doing so the student divides the given number by 5. If the answer is 4 short of the correct answer then the number was
 - (a) 320 (b) 400 (c) 480 (d) none of these.
- 12. If a number of which the half is greater than $\frac{1}{5}$ th of the number by 15 then the number is (a) 50 (b) 40 (c) 80 (d) none of these.

2.3 SIMULTANEOUS LINEAR EQUATIONS IN TWO UNKNOWNS

The general form of a linear equations in two unknowns x and y is ax + by + c = 0 where a b are non-zero coefficients and c is a constant. Two such equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2x + c_2 = 0$ form a pair of simultaneous equations in x and y. A value for each unknown which satisfies simultaneously both the equations will give the roots of the equations.

2.4 METHOD OF SOLUTION

1. **Elimination Method:** In this method two given linear equations are reduced to a linear equation in one unknown by eliminating one of the unknowns and then solving for the other unknown.

Example 1: **Solve:** 2x + 5y = 9 and 3x - y = 5.

Solution: 2x + 5y = 9 (i) 3x - y = 5(ii) By making (i) x 1, 2x + 5y = 9

and by making (ii) x 5, 15x - 5y = 25

Adding 17x = 34 or x = 2. Substituting this values of x in (i) i.e. 5y = 9 - 2x we find; 5y = 9 - 4 = 5 $\therefore y = 1$ $\therefore x = 2$, y = 1.

2. Cross Multiplication Method: Let two equations be:

$$a_1 x + b_1 y + c_1 = 0$$

 $a_2 x + b_2 y_+ c_2 = 0$

We write the coefficients of x, y and constant terms and two more columns by repeating the coefficients of x and y as follows:

$$1 2 3 4$$

$$b_{1} - c_{2} - c_{2} - a_{2} - b_{2} - b_$$

MATHS

2.5 METHOD OF SOLVING SIMULTANEOUS LINEAR EQUATION WITH THREE VARIABLES

Example 1: Solve for x, y and z:

2x-y + z = 3 x + 3y - 2z = 11 3x - 2y + 4z = 1

Solution: (a) Method of elimination

(i)
(ii)
(iii)
(iv)
(v) [the variable z is thus eliminated]
(vi)
(vii)
5
5x = 15 or, x = 3
a gring and D
A THE A TRANSPORT AND A TRANSPORT AND A TRANSPORT

So x = 3, y = 2, z = -1 is the required solution.

(Any two of 3 equations can be chosen for elimination of one of the variables)

(b) Method of cross multiplication

We write the equations as follows:

$$2x - y + (z - 3) = 0$$

2.8

x + 3y + (-2z - 11) = 0

By cross multiplication

$$\frac{x}{-1(-2z-11)-3(z-3)} = \frac{y}{(z-3)-2(-2z-11)} = \frac{1}{2\times 3 - 1(-1)}$$
$$\frac{x}{20-z} = \frac{y}{5z+19} = \frac{1}{7}$$

$$x = \frac{20 - z}{7}$$
 $y = \frac{5z + 19}{7}$

Substituting above values for x and y in equation (iii) i.e. 3x - 2y + yz = 1, we have

$$3\left(\frac{20-z}{7}\right) - 2 \quad \left(\frac{5z+19}{7}\right) + 4z = 1$$

or $60-3z-10z-38 + 28z = 7$
or $15z = 7-22$ or $15z = -15$ or $z = -1$
Now $x = \frac{20-(-1)}{7} = \frac{21}{7} = 3$, $y = \frac{5(-1)+19}{7} = \frac{14}{7} = 2$
Thus $x = 3$, $y = 2$, $z = -1$

Example 2: Solve for x, y and z:

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 5, \qquad \frac{2}{x} - \frac{3}{y} - \frac{4}{z} = -11, \qquad \frac{3}{x} + \frac{2}{y} - \frac{1}{z} = -6$$
Solution: We put $u = \frac{1}{x}$ $v = \frac{1}{y}$ $w = \frac{1}{z}$ and get $u + v + w = 5$ (i)
 $2u - 3v - 4w = -11$ (ii)
 $3u + 2v - w = -6$ (iii)
By (i) + (iii) $4u + 3v = -1$ (iv)
By (iii) $x 4$ $12u + 8v - 4w = -24$ (v)
By (iii) $-(v)$ $-10u - 11v = 13$ or $10u + 11v = -13$ (vi)
By (iv) $\times 11$ $44x + 33v = -11$ (vii)
By (vi) $\times 3$ $30u + 33v = -39$ (viii)
By (vii) $-(viii)$ $14u = 28$ or $u = 2$
Putting $u = 2$ in (iv) $4 \times 2 + 3v = -1$
or $8 + 3v = -1$
or $3v = -9$ or $v = -3$
Putting $u = 2, v = -3$ in (i) or $2-3 + w = 5$
or $-1 + w = 5$ or $w = 5+1$ or $w = 6$

Thus $x = \frac{1}{u} = \frac{1}{2}$ $y = -\frac{1}{v} = \frac{1}{-3}$ $z = \frac{1}{w} = \frac{1}{6}$ is the solution. **Example 3:** Solve for x y and z: $\frac{xy}{x+y} = 70, \ \frac{xz}{x+z} = 84, \ \frac{yz}{y+z} = 140$ Solution: We can write as $\frac{x+y}{xy} = \frac{1}{70}$ or $\frac{1}{x} + \frac{1}{y} = \frac{1}{70}$ (i) $\frac{x+z}{xz} = \frac{1}{84}$ or $\frac{1}{z} + \frac{1}{x} = \frac{1}{84}$ (ii) $\frac{y+z}{yz} = \frac{1}{140}$ or $\frac{1}{y} + \frac{1}{z} = \frac{1}{140}$ (iii) By (i) + (ii) + (iii), we get 2 $\begin{pmatrix} 1 & 1 & 1 \\ x & y & z \\ y & z & z \end{pmatrix} = \frac{1}{70}$ $+\frac{1}{140}=\frac{14}{420}$ or $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{7}{420} = \frac{1}{60}$(iv) By (iv)-(iii) $\frac{1}{x} = \frac{1}{60} - \frac{1}{140} = \frac{4}{420}$ or x = 105By (iv)-(ii) $\frac{1}{v} = \frac{1}{60} - \frac{1}{84} = \frac{2}{420}$ or y = 210By (iv)-(i) $\frac{1}{7} = \frac{1}{60} - \frac{1}{70}$ or z = 420Required solution is x = 105, y = 210, z = 420**Exercise 2 (C)**

Choose the most appropriate option (a) (b) (c) (d)

The solution of the set of equations 3x + 4y = 7, 4x - y = 3 is
 a) (1, -1)
 b) (1, 1)
 c) (2, 1)
 d) (1, -2)

2. The values of x and y satisfying the equations $\frac{x}{2} + \frac{y}{3} = 2$, x + 2y = 8 are given by the pair.

a) (3, 2) b) (-2, -3) c) (2, 3) d) none of these

3. $\frac{x}{p} + \frac{y}{q} = 2$, x + y = p + q are satisfied by the values given by the pair. a) (x=p, y=q) b) (x=q, y=p)c) (x=1, y=1)d) none of these The solution for the pair of equations 4. $\frac{1}{16x} + \frac{1}{15y}\frac{9}{20}$, $\frac{1}{20x} - \frac{1}{27y} = \frac{4}{45}$ is given by $(a)\left(\frac{1}{4},\frac{1}{3}\right) \qquad (b)\left(\frac{1}{3},\frac{1}{4}\right)$ (c) (3 4) (d) (4 3) 5. Solve for x and y: $\frac{4}{x} - \frac{5}{y} = \frac{x+y}{xy} + \frac{3}{10}$ and 3xy = 10 (y–x). The values of x and y are given by the pair. a) (5, 2) b) (-2, -5) c) (2, -5) d) (2,5) The pair satisfying the equations x + 5y = 36, $\frac{x+y}{x-y} = \frac{5}{3}$ is given by a) (16, 4) b) (4, 16) c) (4, 8) d) no 6. d) none of these. 7. Solve for x and y : x-3y =0, x+2y = 20. The values of x and y are given as a) x=4, y=12 b) x=12, y=4 c) x=5, y=4 d) none of d) none of these The simultaneous equations 7x-3y = 31, 9x-5y = 41 have solutions given by 8. (c) (4, -1) b) (-1, 4) a) (-4, -1) d) (3,7) 1.5x + 2.4 y = 1.8, 2.5(x+1) = 7y have solutions as 9. c) $(\frac{1}{2}, \frac{2}{5})$ a) (0.5, 0.4) b) (0.4, 0.5) d) (2,5) 10. The values of x and Y satisfying the equations $\frac{3}{x+y} + \frac{2}{x-y} = 3$, $\frac{2}{x+y} + \frac{3}{x-y} = 3\frac{2}{3}$ are given by a) (1, 2) b) (-1, -2) c) $(1, \frac{1}{2})$ d) (2, 1)

MATHS

Exercise 2 (D)

Choose the most appropriate option (a) (b) (c) (d) as the solution to the given set of equations :

1.	1.5x + 3.6y = 2.1	1, 2.5 (x+1) = 6y		
	a) (0.2, 0.5)	b) (0.5, 0.2)	c) (2, 5)	d) (-2, -5)
2.	$\frac{x}{5} + \frac{y}{6} + 1 = \frac{x}{6}$	$+\frac{y}{5} = 28$		
	a) (6, 9)	b) (9, 6)	c) (60, 90)	d) (90, 60)
3.	$\frac{x}{4} = \frac{y}{3} = \frac{z}{2}$	7x + 8y + 5z = 62		
	a) (4, 3, 2)	b) (2, 3, 4)	c) (3, 4, 2)	d) (4, 2, 3)
4.	$\frac{x y}{x+y} = 20 \frac{y z}{y+z}$	$= 40 \frac{z x}{z + x} = 24$		
	a) (120, 60, 30)	b) (60, 30, 120)	c) (30, 120, 60)	d) (30, 60, 120)
5.	2x + 3y + 4z = 0	0, x + 2y - 5z = 0, 10x + 0	16y - 6z = 0	
	a) (0,0,0)	b) (1, -1, 1)	c) (3, 2, -1)	d) (1, 0, 2)
6.	$\frac{1}{3}$ (x+y) + 2z =	21, $3x - \frac{1}{2}(y+z) = 65, x$	$+\frac{1}{2}(x+y-z)=38$	
	a) (4,9,5)	b) (2,9,5)	c) (24, 9, 5)	d) (5, 24, 9)
7.	$\frac{4}{x} - \frac{5}{y} = \frac{x+y}{xy} + \frac{3}{10}$	$\frac{3}{0}$ 3 xy = 10 (y-x)		
	a) (2, 5)	b) (5, 2)	c) (2, 7)	d) (3, 4)
8.	$\frac{x}{0.01} + \frac{y + 0.03}{0.05} =$	$=\frac{y}{0.02} + \frac{x + 0.03}{0.04} = 2$		
	a) (1, 2)	b) (0.1, 0.2)	c) (0.01, 0.02)	d) (0.02, 0.01)
9.	$\frac{x y}{y - x} = 110, \frac{yz}{z - y}$	=132, $\frac{z \cdot x}{z+x} = \frac{60}{11}$		
	a) (12, 11, 10)	b) (10, 11, 12)	c) (11, 10, 12)	d) (12, 10, 11)
10.	3x - 4y + 70z = 0,	2x+3y-10z = 0, x+2y+	3z = 13	
	a) (1, 3, 7)	b) (1, 7, 3)	c) (2, 4, 3)	d) (-10, 10, 1)

2.12

2.6 PROBLEMS LEADING TO SIMULTANEOUS EQUATIONS

Illustrations :

1. If the numerator of a fraction is increased by 2 and the denominator by 1 it becomes 1. Again if the numerator is decreased by 4 and the denominator by 2 it becomes 1/2. Find the fraction

Solution: Let x/y be the required fraction.

By the question $\frac{x+2}{y+1}=1, \frac{x-4}{y-2}=\frac{1}{2}$ Thus x + 2 = y + 1or x - y = -1....... (i)and 2x - 8 = y-2or 2x - y = 6....... (ii)By (i) - (ii) -x = -7or x = 7from (i) 7-y = -1or y = 8So the required fraction is 7/8.

2. The age of a man is three times the sum of the ages of his two sons and 5 years hence his age will be double the sum of their ages. Find the present age of the man?

Solution: Let x years be the present age of the man and sum of the present ages of the two sons be y years.

By the condition x = 3y (i) and x + 5 = 2 (y+5+5) (ii) From (i) & (ii) 3y + 5 = 2 (y+10)or 3y + 5 = 2y + 20or 3y - 2y = 20 - 5or y = 15 $x = 3 \times y = 3 \times 15 = 45$

Hence the present age of the main is 45 years

3. A number consist of three digit of which the middle one is zero and the sum of the other digits is 9. The number formed by interchanging the first and third digits is more than the original number by 297 find the number.

Solution: Let the number be 100x + y. we have x + y = 9.....(i) Also 100y + x = 100x + y + 297 (ii) From (ii) 99(x - y) = -297or x - y = -3 (iii)

Adding (i) and (ii) 2x = 6 x = 3 \therefore from (i) y = 6

 \therefore Hence the number is 306.

Exercise 2 (E)

Choose the most appropriate option (a) (b) (c) (d)

1. Monthly incomes of two persons are in the ratio 4 : 5 and their monthly expenses are in the ratio 7 : 9. If each saves Rs. 50 per month find their monthly incomes.

a) (500, 400) b) (400, 500) c) (300, 600) d) (350, 550)

2. Find the fraction which is equal to 1/2 when both its numerator and denominator are increased by 2. It is equal to 3/4 when both are incressed by 12.

a) 3/8 b) 5/8 c) 3/8 d) 2/3

3. The age of a person is twice the sum of the ages of his two sons and five years ago his age was thrice the sum of their ages. Find his present age.

a) 60 yeas b) 52 years c) 51 years d) 50 years.

4. A number between 10 and 100 is five times the sum of its digits. If 9 be added to it the digits are reversed find the number.

a) 54 b) 53 c) 45 d) 55

5. The wages of 8 men and 6 boys amount to Rs. 33. If 4 men earn Rs. 4.50 more than 5 boys determine the wages of each man and boy.

a) (Rs. 1.50, Rs. 3)	b) (Rs. 3, Rs. 1.50)
c) (Rs. 2.50, Rs. 2)	d) (Rs. 2, Rs. 2.50)

6. A number consisting of two digits is four times the sum of its digits and if 27 be added to it the digits are reversed. The number is :

a) 63 b) 35 c) 36 d) 60

7. Of two numbers, 1/5th of the greater is equal to 1/3rd of the smaller and their sum is 16. The numbers are:

a) (6, 10) b) (9, 7) c) (12, 4) d) (11, 5)

8. Y is older than x by 7 years 15 years back X's age was 3/4 of Y's age. Their present ages are:

a) (X=36, Y=43)	b) (X=50, Y=43)
-----------------	-----------------

- c) (X=43, Y=50) d) (X=40, Y=47)
- 9. The sum of the digits in a three digit number is 12. If the digits are reversed the number is increased by 495 but reversing only of the ten's and unit digits in creases the number by 36. The number is

a) 327 b) 372 c) 237 d) 273

COMMON PROFICIENCY TEST

- 10. Two numbers are such that twice the greater number exceeds twice the smaller one by 18 and 1/3 of the smaller and 1/5 of the greater number are together 21. The numbers are :
 - a) (36, 45) b) (45, 36) c) (50, 41) d) (55, 46)
- 11. The demand and supply equations for a certain commodity are 4q + 7p = 17 and

 $p = \frac{q}{3} + \frac{7}{4}$ respectively where p is the market price and q is the quantity then the equilibrium price and quantity are:

equilibrium price and quantity are:

(a)
$$2, \frac{3}{4}$$
 (b) $3, \frac{1}{2}$ (c) $5, \frac{3}{5}$ (d) None of these.

2.7 QUADRATIC EQUATION

An equation of the form $ax^2 + bx + c = 0$ where x is a variable and a, b, c are constants with a $\neq 0$ is called a quadratic equation or equation of the second degree.

When b=0 the equation is called a pure quadratic equation; when $b \neq 0$ the equation is called an affected quadratic.

Examples: i) $2x^2 + 3x + 5 = 0$ ii) $x^2 - x = 0$ iii) $5x^2 - 6x - 3 = 0$

The value of the variable say x is called the root of the equation. A quadratic equation has got two roots.

How to find out the roots of a quadratic equation:

$$ax^{2} + bx + c = 0 \quad (a \neq 0)$$

or
$$x^{2} + \frac{b}{a} + x + \frac{c}{a} = 0$$

or
$$x^{2} + 2\frac{b}{2a} + \frac{b^{2}}{4a^{2}} = \frac{b^{2}}{4a^{2}} - \frac{c}{a}$$

or
$$\left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2}}{4a^{2}} - \frac{c}{a}$$

or
$$x + \frac{b}{2a} = \frac{\pm\sqrt{b^{2} - 4ac}}{2a}$$

or
$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

MATHS

Let one root be α and the other root be β Now $a + b = \frac{-b + \sqrt{b^2 - 4ac}}{2a} + \frac{-b - \sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac} - b - \sqrt{b^2 - 4ac}}{2a}$ $=\frac{-2b}{2a}=\frac{-b}{a}$ Thus sum of roots = $-\frac{b}{a} = -\frac{\text{coefficient of } x}{\text{coefficient of } x^2}$ Next $\alpha\beta = \left(\frac{-b + \sqrt{b^2 - 4ac}}{2a}\right) \left(\frac{-b - \sqrt{b^2 - 4ac}}{2a}\right) = \frac{c}{a}$ So the product of the roots = $\frac{c}{a} = \frac{\text{constant term}}{\text{coefficient of } x^2}$ HOW TO CONSTRUCT A QUADRATIC EQUATION

2.8

For the equation $ax^2 + bx + c = 0$ we have or $x^2 + \frac{b}{a}x + \frac{c}{a} = 0$ or $x^2 - \left(-\frac{b}{a}\right)x + \frac{c}{a} = 0$

or x^2 – (Sum of the roots) x + Product of the roots = 0

NATURE OF THE ROOTS 2.9

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- i) If $b^2-4ac = 0$ the roots are real and equal;
- If b^2 -4ac >0 then the roots are real and unequal (or distinct); ii)
- iii) If b²–4ac <0 then the roots are imaginary;
- iv) If b^2 -4ac is a perfect square ($\neq 0$) the roots are real, rational and unequal (distinct);
- If b²–4ac but not a perfect square the rots are real, irrational and unequal. v) Since $b^2 - 4ac$ discriminates the roots $b^2 - 4ac$ is called the discriminant in the equation
 - $ax^{2} + bx + c = 0$ as it actually discriminates between the roots.

- **Note:** (a) Irrational roots occur in pairs that is if $(m + \sqrt{n})$ is a root then $(m \sqrt{n})$ is the other root of the same equation.
 - (b) If one root is reciprocal to the other root then their product is 1 and so $\frac{c}{a} = 1$ i.e. c = a
 - (c) If one root is equal to other root but opposite in sign then.

their sum = 0 and so
$$\frac{b}{a} = 0$$
. i.e. $b = 0$.

Example 1 : Solve $x^2 - 5x + 6 = 0$

Solution: 1st method : $x^2 - 5x + 6 = 0$ or $x^2 - 2x - 3x + 6 = 0$ or x(x-2) - 3(x-2) = 0or (x-2) (x-3) = 0or x = 2 or 32nd method (By formula) $x^2 = 5x + 6 = 0$ Here a = 1 b = -5 c = 6 (comparing the equation with $ax^2 + bx + c = 0$) $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{25 - 24}}{2}$ $= \frac{5 \pm 1}{2} = \frac{6}{2}$ and $\frac{4}{2}$, $\therefore x = 3$ and 2

Example 2: Examine the nature of the roots of the following equations.

i) $x^2 - 8x + 16 = 0$ ii) $3x^2 - 8x + 4 = 0$ iii) $5x^2 - 4x + 2 = 0$ iv) $2x^2 - 6x - 3 = 0$

Solution: (i) a = 1 b = -8 c = 16

$$b^2 - 4ac = (-8)^2 - 4.1.16 = 64 - 64 = 0$$

The roots are real and equal.

(ii) $3x^2 - 8x + 4 = 0$ a = 3 b = -8 c = 4 $b^2 - 4ac = (-8)^2 - 4.3.4 = 64 - 48 = 16 > 0$ and a perfect square The roots are real, rational and unequal

MATHS

(iii)
$$5x^2 - 4x + 2 = 0$$

 $b^2 - 4ac = (-4)^2 - 4.5.2 = 16-40 = -24 < 0$

The roots are imaginary and unequal

(iv) $2x^2 - 6x - 3 = 0$ $b^2 - 4ac = (-6)^2 - 4.2$ (-3) = 36 + 24 = 60 > 0

The root are real and unequal. Since $b^2 - 4ac$ is not a perfect square the roots are real irrational and unequal.

Illustrations:

1. If α and β be the roots of $x^2 + 7x + 12 = 0$ find the equation whose roots are $(\alpha + \beta)^2$ and $(\alpha - \beta)^2$.

Solution : Now sum of the roots of the required equation

$$= (\alpha + \beta)^{2} + (\alpha - \beta)^{2} = (-7)^{2} + (\alpha + \beta)^{2} - 4\alpha\beta$$

= 49 + (-7)² - 4x12
= 49 + 49 - 48 = 50
Product of the roots of the required equation = $(\alpha - \beta)^{2} \cdot (\alpha - \beta)^{2}$
= 49 (49-48) = 49
Hence the required equation is

 x^{2} – (sum of the roots) x + product of the roots = 0 or x^{2} – 50x + 49 = 0

2. If α, β be the roots of $2x^2 - 4x - 1 = 0$ find the value of $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$

Solution:
$$\alpha + \beta = \frac{-(-4)}{2} = 2, \quad \alpha\beta = \frac{-1}{2}$$

 $\therefore \frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha\beta} = \frac{(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)}{\alpha\beta}$
 $\frac{2^3 - 3\left(-\frac{1}{2}\right).2}{\left(-\frac{1}{2}\right)} = -22$

Solve $x : 4^x - 3.2^{x+2} + 2^5 = 0$ 3. **Solution:** $4^x - 3 \cdot 2^{x+2} + 2^5 = 0$ or $(2^{x})^{2} - 3 \cdot 2^{x} \cdot 2^{2} + 32 = 0$ or $(2^{x})^{2} - 12$. $2^{x} + 32 = 0$ or $y^2 - 12y + 32 = 0$ (taking $y = 2^x$) or $v^2 - 8v - 4v + 32 = 0$ \therefore (y - 8) (y - 4) = 0 or y(y - 8) - 4(y - 8) = 0either y - 8 = 0 or y - 4 = 0 $\therefore y = 8$ or y = 4. $\Rightarrow 2^x = 8 = 2^3$ or $2^x = 4 = 2^2 \Rightarrow x = 3$ or x = 2. 4. Solve $\left(x - \frac{1}{x}\right)^2 + 2\left(x + \frac{1}{x}\right) = 7\frac{1}{4}$. **Solution:** $\left(x - \frac{1}{x}\right)^2 + 2\left(x + \frac{1}{x}\right) = 7\frac{1}{4}$ $\left(x-\frac{1}{x}\right)^{2}+2\left(x+\frac{1}{x}\right)=\frac{29}{4}$ or $\left(x+\frac{1}{x}\right)^2 - 4 + 2\left(x+\frac{1}{x}\right)^2 = \frac{29}{4}$ $[as (a - b)^{2} = (a + b)^{2} - 4ab)]$ or $p^2 + 2p - \frac{45}{4} = 0$ Taking $p = x + \frac{1}{2}$ or $4p^2 + 8p - 45 = 0$ or $4p^2 + 18p - 10p - 45 = 0$ or 2p(2p + 9) - 5(2p + 9) = 0or (2p - 5)(2p + 9) = 0. :.Either 2p + 9 = 0 or $2p - 5 = 0 \implies p = -\frac{9}{2}$ or $p = \frac{5}{2}$:.Either $x + \frac{1}{x} = -\frac{9}{2}$ or $x + \frac{1}{x} = \frac{5}{2}$ i.e. Either $2x^2 + 9x + 2 = 0$ or $2x^2 - 5x + 2 = 0$ i.e. Either x = $\frac{-9 \pm \sqrt{81-16}}{4}$ or, x- $\frac{5 \pm \sqrt{25-16}}{4}$

MATHS

i.e. Either
$$x = \frac{-9\pm\sqrt{65}}{4}$$
 or $x = 2\frac{1}{2}$.
5. Solve $2^{x-2} + 2^{3-x} = 3$
Solution: $2^{x-2} + 2^{3-x} = 3$
or $2^x \cdot 2^{-2} + 2^3 \cdot 2^{-x} = 3$
or $\frac{2^x}{2^2} + \frac{2^3}{2^x} = 3$
or $\frac{t}{4} + \frac{8}{t} = 3$ when $t = 2^x$
or $t^2 + 32 = 12t$
or $t^2 - 12t + 32 = 0$
or $t^2 - 8t - 4t + 32 = 0$
or $t(t-8) - 4(t-8) = 0$
 $\therefore t = 4, 8$
For $t = 4$ $2^x = 4 = 2^2$ i.e. $x = 2$
For $t = 8$ $2^x = 8 = 2^3$ i.e. $x = 3$
6. If one root of the equation is $2 - \sqrt{3}$ form the equation.
Solution: other roots is $2 + \sqrt{3}$ \therefore sum of two roots $= 2 - \sqrt{3} + 2 + \sqrt{3} = 4$
Product of roots $= (2 - \sqrt{3})(2 + \sqrt{3}) = 4 - 3 = 1$

- :. Required equation is : $x^2 (\text{sum of roots})x + (\text{product of roots}) = 0$ or $x^2 - 4x + 1 = 0$.
- 7. If $\alpha \beta$ are the two roots of the equation $x^2 px + q = 0$ form the equation whose roots are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$.

Solution: As α , β are the roots of the equation $x^2 - px + q = 0$ $\alpha + \beta = -(-p) = p$ and $\alpha \beta = q$. Now $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta} = \frac{p^2 - 2q}{q}$; and $\frac{\alpha}{\beta} \cdot \frac{\beta}{\alpha} = 1$

$$\therefore \text{ Required equation is } x^2 - \left(\frac{p2 - 2q}{q}\right)x + 1 = 0$$

or $q x^2 - (p^2 - 2q) x + q = 0$

8. If the roots of the equation
$$p(q - r)x^2 + q(r - p)x + r(p - q) = 0$$

2 1 1

are equal show that $\frac{2}{q} = \frac{1}{p} + \frac{1}{r}$.

Solution: Since the roots of the given equation are equal the discriminant must be zero ie. $q^2(r-p)^2 - 4$. p(q-r) r(p-q) = 0

or
$$q^2 r^2 + q^2 p^2 - 2q^2 rp - 4pr (pq - pr - q^2 + qr) = 0$$

or $p^2q^2 + q^2r^2 + 4p^2r^2 + 2q^2pr - 4p^2qr - 4pqr^2 = 0$

- or $(pq + qr 2rp)^2 = 0$
- \therefore pq + qr = 2pr

or
$$\frac{p q+qr}{2pr} = 1$$

Exercise 2(F)

Choose the most appropriate option (a) (b) (c) (d)

1. If the roots of the equation $2x^2 + 8x - m^3 = 0$ are equal then value of m is (a) -3 (b) -1 (c) 1 (d) -2

or, $\frac{q}{2}$. $\frac{(p+r)}{pr} = 1$ or, $\frac{1}{r} + \frac{1}{r}$

- 2. If $2^{2x+3} 3^2$. $2^x + 1 = 0$ then values of x are (a) 0, 1 (b) 1, 2 (c) 0, 3 (d) 0, -3
- 3. The values of $4 + \frac{1}{4 + \frac{1}{4 + \frac{1}{4 + \dots ...2}}}$ (a) $1 \pm \sqrt{2}$ (b) $2 \pm \sqrt{5}$

(c)
$$2\pm\sqrt{3}$$
 (c)

d) none of these

- 4. If $\alpha\beta$ be the roots of the equation $2x^2 4x 3 = 0$
 - the value of $\infty^2 + \beta^2$ is
 - a) 5 b) 7 c) 3 d) 4

5	If the sum of the roots of the quadratic equation $ax^2 + bx + c = 0$ is equal to the sum of the						
	squares of their reciprocals then $\frac{b^2}{ac} + \frac{bc}{a^2}$ is equal to						
	a) 2	b) –2	c) 1	d) –1			
6.	The equation x^2 -	-(p+4)x + 2p + 5 = 0 has	s equal roots the value	es of p will be.			
	a) ± 1	b) 2	c) ± 2	d) –2			
7.	The roots of the	equation $x^2 + (2p-1)x +$	$p^2 = 0$ are real if.				
	a) p ≥ 1	b) p ≤ <u></u>]4	c) p ≥ 1/4	d) p ≤ 1/4			
8.	If $x = m$ is one of	the solutions of the equa	ation $2x^2 + 5x - m = 0$	the possible values of m are			
	a) (0, 2)	b) (0, –2)	c) (0, 1)	d) (1, -1)			
9.	If p and q are the	e roots of $x^2 + 2x + 1 = 0$) then the values of p^2	+ q ² becomes			
	a) 2	b) –2	c) 4	d) – 4			
10.	If $L + M + N = 0$ + (L+M-N) = 0 a	and L M N are rationals are	the roots of the equation	on $(M+N-L) x^2 + (N+L-M)x$			
	a) real and irrati	onal	b) real and rational				
	c) imaginary and	l equal	d) real and equal $\alpha^2 \beta^2$				
11.	If μ and β are t	the roots of $x^2 = x+1$ the	n value of $\frac{\beta}{\beta} - \frac{\beta}{\alpha}$	is			
	a) $2\sqrt{5}$	b) √5	c) 3√5	d) $-2\sqrt{5}$			
12.	If $p \neq q$ and $p^2 =$	$5p - 3$ and $q^2 = 5q - 3$	the equation having ro	pots as $\frac{p}{q}$ and $\frac{q}{p}$ is			
	a) $x^2 - 19x + 3 =$	0	b) $3x^2 - 19x - 3 = 0$				
	c) $3x^2 - 19x + 3 =$	= 0	d) $3x^2 + 19x + 3 = 0$				
13.	If one rot of $5x^2$ -	+ 13x + p = 0 be recipro	cal of the other then the	ne value of p is			
	a) –5	b) 5	c) 1/5	d) -1/5			
Exe	rcise 2 (G)						
Cho	oose the most app	propriate option (a) (b)	(c) (d)				
1.	A solution of the	e quadratic equation (a+	$-b-2c)x^{2} + (2a-b-c)x +$	(c+a-2b) = 0 is			
	a) x = 1	b) x = -1	c) x = 2	d) x = - 2			
2.	If the root of the	equation $x^2 - 8x + m = 0$ e	exceeds the other by 4	then the value of m is			

2.22

- The values of x in the equation 3. $7(x+2p)^2 + 5p^2 = 35xp + 117p^2$ are a) (4p, -3p) b) (4p, 3p) c) (–4p, 3p) d) (-4p, -3p)The solutions of the equation $\frac{6x}{x+1} + \frac{6(x+1)}{x} = 13$ are 4. b) (3, -2) a) (2, 3) c) (-2, -3) d) (2, -3) The satisfying values of x for the equation 5. $\frac{1}{x+p+q} = \frac{1}{x} + \frac{1}{p} + \frac{1}{q}$ are c) (p, –p) a) (p, q) b) (-p, -q) d) (-p, q) The values of x for the equation $x^2+9x+18 = 6-4x$ are 6. b) (-1, -12) a) (1, 12) d) (-1, 12) c) (1, -12) The values of x satisfying the equation 7. $\sqrt{(2x^2+5x-2)} - \sqrt{(2x^2+5x-9)} = 1$ are a) (2, -9/2) b) (4, -9) c) (2, 9/2) d) (-2, 9/2) The solution of the equation $3x^2-17x + 24 = 0$ are 8. b) $(2, 3\frac{2}{3})$ c) $(3, 2\frac{2}{3})$ d) $(3, \frac{2}{2})$ a) (2, 3) The equation $\frac{3(3x^2+15)}{(x^2+15)} + 2x^2 + 9 = \frac{2x^2+96}{(x^2+15)} + 6$ 9. has got the solution as a) (1, 1) b) (1/2, -1)c) (1, -1) d) (2, −1) 10. The equation $\left(\frac{\lambda-m}{2}\right)x^2 - \left(\frac{\lambda+m}{2}\right)x + m = 0$ has got two values of x to satisfy the equation given as a) $\begin{pmatrix} 1, \frac{2m}{l-m} \end{pmatrix}$ b) $\begin{pmatrix} 1, \frac{m}{l-m} \end{pmatrix}$ c) $\begin{pmatrix} 1, \frac{2l}{l-m} \end{pmatrix}$ d) $\begin{pmatrix} 1, \frac{l}{l-m} \end{pmatrix}$ 2.10 PROBLEMS ON QUADRATIC EQUATION
- 1. Difference between a number and its positive square root is 12; find the numbers? **Solution:** Let the number be x. Then $x - \sqrt{x} = 12$ (i)

MATHS

- $(\sqrt{x})^2 \sqrt{x} 12 = 0.$ Taking $y = \sqrt{x}$, $y^2 y 12 = 0$ or (y - 4) (y + 3) = 0 \therefore Either y = 4 or y = -3 i.e. Either $\sqrt{x} = 4$ or $\sqrt{x} = -3$ If $\sqrt{x} = -3 = 9$ if does not satisfy equation (i) so $\sqrt{x} = 4$ or x = 16.
- **2.** A piece of iron rod costs Rs. 60. If the rod was 2 metre shorter and each metre costs Re. 1.00 more, the cost would remain unchanged. What is the length of the rod?

Solution: Let the length of the rod be x metres. The rate per meter is Rs. $\frac{60}{x}$.

New Length = (x - 2); as the cost remain the same the new rate per meter is $\frac{60}{x-2}$

Divide 25 into two parts so that sum of their reciprocals is 1/6.
Solution: let the parts be x and 25 - x

By the question
$$\frac{1}{x} + \frac{1}{25 - x} = \frac{1}{6}$$

or $\frac{25 - x + x}{x(25 - x)} = \frac{1}{6}$
or $150 = 25x - x^2$
or $x^2 - 25x + 150 = 0$
or $x^2 - 15x - 10x + 150 = 0$
or $x(x - 15) - 10(x - 15) = 0$
or $(x - 15) (x - 10) = 0$

or x = 10, 15

So the parts of 25 are 10 and 15.

Exercise 2 (H)

Choose the most appropriate option (a) (b) (c) (d)

- 1. Te sum of two numbers is 8 and the sum of their squares is 34. Taking one number as x form an equation in x and hence find the numbers. The numbers are
 - a) (7, 10) b) (4, 4) c) (3, 5) d) (2, 6)
- 2. The difference of two positive integers is 3 and the sum of their squares is 89. Taking the smaller integer as x form a quadratic equation and solve it to find the integers. The integers are.
 - a) (7, 4) b) (5, 8) c) (3, 6) d) (2, 5)
- 3. Five times of a positive whole number is 3 less than twice the square of the number. The number is

-3

c) (40m, 50m)

d) 2

d) none

- a) 3 b) 4
- 4. The area of a rectangular field is 2000 sq.m and its perimeter is 180m. Form a quadratic equation by taking the length of the field as x and solve it to find the length and breadth of the field. The length and breadth are

a) (205m, 80m) b) (50m, 40m)

5. Two squares have sides p cm and (p + 5) cms. The sum of their squares is 625 sq. cm. The sides of the squares are

(a) (10 cm, 30 cm)	(b) (12 cm, 25 cm)
(c) 15 cm, 20 cm)	(d) none of these

6. Divide 50 into two parts such that the sum of their reciprocals is 1/12. The numbers are

a) (24, 26) b) (28, 22) (c) (27, 23) (d) (20, 30)

- 7. There are two consecutive numbers such that the difference of their reciprocals is 1/240. The numbers are
 - (a) (15, 16) (b) (17, 18) (c) (13, 14) (d) (12, 13)
- 8. The hypotenuse of a right–angled triangle is 20cm. The difference between its other two sides be 4cm. The sides are

(a) (11cm, 15cm) (b) (12cm, 16cm) (c) (20cm, 24cm) (d) none of these

- 9. The sum of two numbers is 45 and the mean proportional between them is 18. The numbers are
 - a) (15, 30) b) (32, 13) c) (36, 9) d) (25, 20)
- 10. The sides of an equilateral triangle are shortened by 12 units 13 units and 14 units respectively and a right angle triangle is formed. The side of the equilateral triangle is

(a) 17 units (b) 16 units (c) 15 units (d) 18 units

11. A distributor of apple Juice has 5000 bottle in the store that it wishes to distribute in a month. From experience it is known that demand D (in number of bottles) is given by $D = -2000p^2 + 2000p + 17000$. The price per bottle that will result zero inventory is

(a) Rs. 3 (b) Rs. 5 (c) Rs. 2 (d) none of these.

12. The sum of two irrational numbers multiplied by the larger one is 70 and their difference is multiplied by the smaller one is 12; the two numbers are

(a) $3\sqrt{2}$, $2\sqrt{3}$ (b) $5\sqrt{2}$, $3\sqrt{5}$ (c) $2\sqrt{2}$, $5\sqrt{2}$ (d) none of these.

2.11 SOLUTION OF CUBIC EQUATION

On trial basis putting some value of x to check whether LHS is zero then to get a factor. This is a trial and error method. With this factor to factorise the LHS and then to get values of x.

Illustrations :

1. Solve $x^3 - 7x + 6 = 0$

Putting x = 1 L.H.S is Zero. So (x–1) is a factor of $x^3 - 7x + 6$

We write $x^3-7x + 6 = 0$ in such a way that (x-1) becomes its factor. This can be achieved by writing the equation in the following form.

or
$$x^3 - x^2 + x^2 - x - 6x + 6 = 0$$

or
$$x^{2}(x-1) + x(x-1) - 6(x-1) = 0$$

or $(x-1)(x^{2}+x-6) = 0$

or
$$(x-1)(x^2+3x-2x-6) = 0$$

or
$$(x-1)\{x(x+3) - 2(x+3)\} = 0$$

or
$$(x-1)(x-2)(x+3) = 0$$

:. or
$$x = 1 2 - 3$$

2.26

2. Solve for real **x**: $x^3 + x + 2 = 0$

Solution: By trial we find that x = -1 makes the LHS zero. So (x + 1) is a factor of $x^3 + x + 2$

We write $x^3 + x + 2 = 0$ as $x^3 + x^2 - x^2 - x + 2x + 2 = 0$ or $x^2(x + 1) - x(x + 1) + 2(x + 1) = 0$ or $(x + 1) (x^2 - x + 2) = 0$. Either x + 1 = 0or $x^2 - x + 2 = 0$ i.e. x = -1i.e. $x = \frac{1 \pm \sqrt{1-8}}{2} = \frac{1 \pm \sqrt{-7}}{2}$

As
$$x = \frac{1 \pm \sqrt{-7}}{2}$$
 is not real, $x = -1$ is the required solution.
Exercise 2 (1)
The solution of the cubic equation $x^3 - 6x^2 + 11x - 6 = 0$ is given by the triplet :
a) $(-1, 1 - 2)$ b) $(1, 2, 3)$ c) $(-2, 2, 3)$ d) $(0, 4, -5)$
2. The cubic equation $x^3 + 2x^2 - x - 2 = 0$ has 3 roots namely.
(a) $(1, -1, 2)$ b) $(-1, 1, -2)$ c) $(-1, 2, -2)$ d) $(1, 2, 2)$
3. $x 4 - 4x + 5$ are the factors of the left-hand side of the equation.
(a) $x^3 + 2x^2 - x - 2 = 0$ (b) $x^3 + x^2 - 20x = 0$
(c) $x^3 - 3x^2 - 4x + 12 = 0$ (d) $x^3 - 6x^2 + 11x - 6 = 0$
4. The equation $3x^3 + 5x^2 = 3x + 5$ has got 3 roots and hence the factors of the left-hand side of the equation $3x^3 + 5x^2 - 3x - 5 = 0$ are
(a) $x - 1, x - 2, x - 5/3$ (b) $(x - 1, x + 1, 3x + 5)(x) + 1, x - 1, 3x - 5 (d) x - 1, x + 1, x - 2$
5. Factorise the left hand side of the equation $x^3 + 7x^2 - 21x - 27 = 0$ and the roots are as
a) $(-3, -9, -1)$ b) $(3, -9, -1)$ c) $(3, 9, 1)$ d) $(-3, 9, 1)$
6. The roots of $x^3 + x^2 - x - 1$ are
(a) $(1, 4, -5)$ (b) $(2, 4, -5)$ (c) $(0, 0, -4, 5)$ (d) $(0, 4, -5)$
8. The roots of the cubic equation $x^3 + 7x^2 - 21x - 27 = 0$ are
(a) $(-3, -9, -1)$ (b) $(3, -9, -1)$ (c) $(3, 9, 1)$ (d) $(-3, 9, 1)$
9. If $4x^3 + 8x^3 - x^2 - 20$ then value of $(2x+3)$ is given by
(a) $4, -1, 2$ (b) $-4, 2, 1$ (c) $2, -4, -1$ (d) none of these.
10. The rational root of the equation $2x^3 - x^2 - 4x + 2 = 0$ is
(a) $\frac{1}{2}$ (b) $-\frac{1}{2}$ (c) 2 (d) -2 .

MATHS

2.12 APPLICATION OF EQUATIONS IN CO - ORDINATE GEOMETRY

Introduction: Co-ordinate geometry is that branch of mathematics which explains the problems of geometry with the help of algebra

Distance of a point from the origin.

By Pythagora's Theorem PQ²=PT² +QT²

or PQ² =
$$(x_2 - x_1)^2 + (y_2 - y_1)^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2$$

or PQ = $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

So distance between two points $(x_1 y_1)$ and $(x_2 y_2)$ is given by $\sqrt{(x_1-x_2)^2 + (y_1-y_2)^2}$.

2.13 EQUATION OF A STRAIGHT LINE

(I) The equation to a straight line in simple form is generally written as y=mx+c (i) where m is called the slope and c is a constant.

If $P_1(x_{1,} y_1)$ and $P_2(x_{2,} y_2)$ be any two points on the line the ratio $\frac{y_2 - y_1}{x_2 - x_1}$ is known as the slope of the line.

We observe that B is a point on the line y = mx+c and OB is the length of the y-axis that is intercepted by the line and that for the point B x=0.

Substituting x=0 in y=mx+c we find y=c the intercept on the y axis.

This form of the straight line is known as slope-intercept form.

- Note : (i) If the line passes through the origin (0, 0) the equation of the line becomes y = mx (or x=my)
 - (ii) If the line is parallel to x-axis, m=0 and the equation of the line becomes y = c (or x = b b is the intercept on x-axis)

MATHS

- (iii) If the line coincides with x-axis, m=0, c=0 then the equation of the line becomes y=0 which is the equation of x-axis. Similarly x=0 is the equation of y-axis.
- (II) Let y = mx + c(i) be the equation of the line p_1p_2 .

Let the line pass through (x_1, y_1) . So we get

$$y1 = mx_1 + c$$
 ...(ii)
By (i) - (ii) $y-y_1 = m(x-x_1)$... (iii)

which is another from of the equation of a line to be used when the slope(m) and any point (x_1, y_1) on the line be given. This form is called **point-slope form.**

(III) If the line above line (iii) passes through another point $(x_{2'}, y_{2})$. we write

$$y_{2}-y_{1} = m(x_{2}-x_{1})$$

by (iii) - (iv) $\frac{y-y_{1}}{y_{2}-y_{1}} = \frac{x-x_{1}}{x_{2}-x_{1}}$
(y- y₁) = $\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)(x-x_{1})$

Which is the equation of the line passing through two points (x_1, y_1) and (x_2, y_2) (IV) We now consider a straight line that makes x-intercept = a and y-intercept = b

Slope of the line

If (x, y) is any point on this line we may also write the slope as

$$\frac{y-0}{x-a} = \frac{y}{x-a}$$
Thus $\frac{y}{x-a} = -\frac{b}{a}$
or $\frac{y}{a} = -\frac{x-a}{a} = -\frac{x}{a} + 1$
Transposing $\frac{x}{a} + \frac{y}{b} = 1$

The form $\frac{x}{a} + \frac{y}{b} = 1$ is called intercept form of the equation of the line and the same is to be used when x-intercept and y-intercept be given.

Note: (i) The equation of a line can also be written as
$$ax+by+c = 0$$

(ii) If we write ax+by+c = 0 in the form y = mx+c

we get
$$y = \left(\frac{-a}{b}\right) x + \left(\frac{-c}{a}\right)$$
 giving slope $m = \left(\frac{-a}{b}\right)$

- (iii) Two lines having slopes m_1 and m_2 are parallel to each other if and only if $m_1 = m_2$ and perpendicular to each other if and only if $m_1m_2 = -1$
- (iv) Let ax + by + c = 0 be a line. The equation of a line parallel to ax + by + c = 0 is ax + by + k = 0 and the equation of the line perpendicular to ax + by + c = 0 is bx-ay + k = 0

Let lines ax + by + c = 0 and $a^1x+b^1y+c^1 = 0$ intersect each other at the point (x_1, y_1) .

So $ax_1 + by_1 + c = 0$ $a^1x1 + b^1y1 + c^1 = 0$

By cross multiplication $\frac{x}{bc'-b'c} = \frac{y}{ca'-ac'} = \frac{1}{ab'-a'b}$ $x_1 = . \frac{bc'-b'c}{ab'-a'b}$ $y_1 = \frac{ca'-c'a}{ab'-a'b}$

Example : Let the lines 2x+3y+5 = 0 and 4x-5y+2 = 0 intersect at $(x_1 y_1)$. To find the point of intersection we do cross multiplication as

 $2x_{1} + 3y_{1} + 5 = 0$ $4x_{1} + 5y_{1} + 2 = 0$

MATHS

$$\frac{x_1}{3 \times 2 \cdot 5 \times 5} = \frac{y_1}{5 \times 4 \cdot 2 \times 2} = \frac{1}{2 \times 5 \cdot 3 \times 4}$$

Solving $x_1 = 19/2 \ y_1 = -8$

(V) The equation of a line passing through the point of intersection of the lines ax + by + c = 0 and $a_1x + b_1y + c = 0$ can be written as ax+by+c+K (a_1x+b_1y+c) = 0 when K is a constant.

(VI) The equation of a line joining the points $(x_1 y_1)$ and $(x_2 y_2)$ is given as

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

If any other point $(x_3 y_3)$ lies on this line we get
$$\frac{y_3-y_1}{y_2-y_1} = \frac{x_3-x_1}{x_2-x_1}$$

or $x_2y_3 - x_2y_1 - x_1y_3 + x_1y_1 = x_3y_2 - x_3y_1 - x_1y_2 + x_1y_1 = 0$
or $x_1y_2-x_1y_3 + x_2y_3 - x_2y_1 + x_3y_1 - x_3y_2 = 0$
or $x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2) = 0$

which is the required condition of collinearity of three points.

Illustrations:

1. Show that the points A(2, 3) B(4, 1) and C(-2, 7) are collinear.

Solution : Using the rule derived in VI above we may conclude that the given points are collinear if 2(1-7)+4(7-3)-2(3-1)=0

i.e. if -12+16-4=0 which is true.

So the three given points are collinear

2. Find the equation of a line passing through the point (5, -4) and parallel to the line 4x+7y+5 = 0

Solution : Equation of the line parallel to 4x+7y+5 = 0 is 4x+7y+K = 0

Since it passes through the point (5, -4) we write

$$4(5) + 7(-4) + k = 0$$

or $20 - 28 + k = 0$
or $-8 + k = 0$
or $k = 8$
The equation of the required line is therefore $4x+7y+8 = 0$.

3. Find the equation of the straight line which passes through the point of intersection of the straight lines 2x+3y = 5 and 3x+5y = 7 and makes equal positive intercepts on the coordinate axes.

Solution: 2x+3y-5 = 0

3x + 5y - 7 = 0

By cross multiplication

$$\frac{x}{-21+25} = \frac{y}{-15+14} = \frac{1}{10-9}$$

or $\frac{x}{4} = \frac{y}{-1} = 1$

So the point of intersection of the given lines is (4, -1)

Let the required equation of line be

- $\frac{x}{a} + \frac{y}{b} = 1$ (*for equal positive intercepts a=b)
- $\therefore x + y = a$

Since it passes through (4, -1) we get 4 - 1 = a or a = 3The equation of the required line is therefore x + y = 3.

4. Prove that (3, 1) (5, –5) and (–1, 13) are collinear and find the equation of the line through these three points.

Solution: If A (3, 1) B (5, – 5) and C (–1, 13) are collinear we may write

3(-5-13) + 5(13-1) - 1(1+5) = 0

or 3(-18) + 5(12) - 6 = 0 which is true.

Hence the given three points are collinear.

As the points A, B, C are collinear, the required line will be the line through any of these two points. Let us find the equation of the line through B(5, -5) and A(3, 1)

Using the rule derived in III earlier we find

$$\frac{y+5}{1+5} = \frac{x-5}{3-5} \text{ or, } \frac{y+5}{6} = \frac{x-5}{-2}$$

or $y + 5 + 3(x - 5) = 0$

or 3x + y = 10 is the required line.

5. Find the equation of the line parallel to the line joining points (7, 5) and (2, 9) and passing through the point (3, -4).

MATHS

6.

2.34

Solution : Equation of the line through the points (7, 5) and (2, 9) is given by

$$\frac{y-5}{9-5} = \frac{x-7}{2-7}$$

or $-5y + 25 = 4x-28$
or $4x+5y-53 = 0$
Equation of the line parallel to $4x+5y-53=0$ is $4x+5y+k = 0$
If it passes through $(3, -4)$ we have $12-20+k = 0$ i.e. $k=8$
Thus the required line is $4x+5y+8 = 0$
Prove that the lines $3x - 4y + 5 = 0$, $7x - 8y + 5 = 0$ and $4x + 5y = 45$ are concurrent.
Solution: Let $(x_1 y_1)$ be the point of intersection of the lines
 $3x - 4y + 5 = 0$ (i)
 $7x - 8y + 5 = 0$ (ii)
Then we have $3x_1 - 4y_1 + 5 = 0$
 $7x_1 - 8y_1 + 5 = 0$

Then $\frac{x_1}{-20+40} = \frac{y_1}{35-15} = \frac{1}{-24+28}$ $\therefore x_1 = \frac{20}{4} = 5.$ $y_1 = \frac{20}{4} = 5.$

Hence (5, 5) is the point of intersection. Now for the line 4x + 5y = 45

we find 4.(5) + 5.5 = 45; hence (5, 5) satisfies the equation 4x+5y=45.

Thus the given three lines are concurrent.

7. A manufacturer produces 80 T.V. sets at a cost Rs. 220000 and 125 T.V. sets at a cost of Rs. 287500. Assuming the cost curve to be linear find the equation of the line and then use it to estimate the cost of 95 sets.

Solution: Since the cost curve is linear we consider cost curve as y = Ax + B where y is total cost. Now for x = 80 y = 220000. \therefore 220000 = 80A +B(i) and for x = 125 y=287500 \therefore 287500 = 125A +B(ii) Subtracting (i) from (ii) 45A = 67500 or A = 1500 From (i) 220000 - 1500 \checkmark 80 = B or B = 220000 - 120000 = 100000 Thus equation of cost line is y = 1500x + 100000. For x = 95 y = 142500 + 100000 = Rs. 242500. \therefore Cost of 95 T.V. set will be Rs. 242500.

Exercise 2(J)

1.

Choose the most appropriate option (a) (b) (c) (d)

The equation of line joining the point (3, 5) to the point of intersection of the lines 4x + y -1 = 0 and 7x - 3y - 35 = 0 is a) 2x - y = 1b) 3x + 2y = 19c) 12x - y - 31 = 0d) none of these. 2. The equation of the straight line passing through the points (-5, 2) and (6, -4) is a) 11x+6y+8 = 0 b) x+y+4 = 0c) 6x + 11y + 8 = 0d) none of these 3 The equation of the line through (-1, 3) and parallel to the line joining (6, 3) and (2, -3) is a) 3x-2y+9 = 0 b) 3x+2y-7 = 0c) x+y-7 = 0d) none of these 4. The equation of a straight line passing through the point (-2, 3) and making intercepts of equal length on the ones is c) x - y + 5 = 0(a) 2x+y+1 = 0 b) x-y+5d) x+y-1=0 If the lines 3x - 4y - 13 = 0 8x - 11y - 33 = 0 and 2x - 3y + = 0 are concurrent then value 5. of λ is (c) + 7(a) 11 (b) 5 (d) none of these The total cost curve of the number of copies of a particular photograph is linear. The total cost of 5 and 8 copies of a photograph are Rs.80 and Rs.116 respectively. The total cost for 10 copies of the photograph will be (a) Rs. 100 (b) Rs. 120 (c) Rs. 120 (d) Rs. 140 A firm produces 50 units of a product for Rs.320 and 80 units for Rs.380.Considering the 7. cost curve to be a straight-line the cost of producing 110 units to be estimated as (a) 400 (b) 420 (c) 440 (d) none of these. The total cost curve of the number of copies photograph is linear The total cost of 5 and 18 8. copies of a photographs are Rs.80 and 116 respectively. Then the total cost for 10 copies of the photographs is (a) Rs. 140 (b) 93.85 (c) 150 (d) Rs. 130

2.14 GRAPHICAL SOLUTION TO LINEAR EQUATIONS

1. Drawing graphs of straight lines

> From the given equation we tabulate values of (x, y) at least 2 pairs of values and then plot them in the graph taking two perpendicular axis (x, y axis). Then joining the points we get the straight line representing the given equation.

Example1 : Find the graph of the straight line having equation 3y = 9 - 2x

Here AB is the required straight line shown in the graph.

Example 2 : Draw graph of the straight lines 3x + 4y = 10 and 2x - y = 0 and find the point of intersection of these lines.

From the graph, the point of intersection is (1, 2)

Exercise (2K)

Choose the most appropriate option (a) (b)((c) (d)

- 1. A right angled triangle is formed by the straight line 4x+3y=12 with the axes. Then length of perpendicular from the origin to the hypotenuse is
 - (a) 3.5 units (b) 2.4 units (c) 4.2 units (d) none of these.
- 2. The distance from the origin to the point of intersection of two straight lines having equations 3x-2y=6 and 3x+2y=18 is
 - (a)3 units (b) 5 units (c) 4 units (d) 2 units.
- 3. The point of intersection between the straight lines 3x + 2y = 6 and 3x y = 12 lie in
 - (a) 1st quadrant (b) 2nd quadrant (c) 3rd quadrant (d) 4th quadrant.

ANSWERS							
Exercise	2(A)						
1. b	2. a	3. c	4. c	5. b	6. d	7. a	8. d
9. c							
Exercise	2(B)						
1. c	2. b	3. a	4. b	5. c	6. a	7. d	8. d
9. a	10. c	11. c	12. a				
Exercise	2(C)						
1. b	2. c	3. a	4. a	5. d	6. a	7. b	8. c
9. b	10. d						
Exercise	2(D)						
1. a	2. c	3. a	4. d	5. a	6. c	7. a	8. c
9. b	10. d		Colored A		<u>k</u>		
Exercise	2(E)			51845	<u> </u>	1	
1. b	2. a	3. d	4. c	5. b	6. c	7. a	8. a
9. c	10. b	11. a		A			
Exercise	2(F)			hand the second se	15		
1. d	2. d	3. b	4. b	5. a D	6. c	7. d	8. b
9. a	10. b	11. d	12. c	13. b			
Exercise	2(G)						
1. b	2. d	3. a	4. d	5. b	6. b	7. a	8. c
9. c	10. a						
Exercise	2(H)						
1. c	2. b	3. a	4. b	5. c	6. d	7. a	8. b
9. c	10. a	11. a	12. c				
Exercise	2(I)						I
1. c	2. b	3. b	4. b	5. b	6. a	7. d	8. b
9. a	10. c						
Exercise	2(J)						
1. c	2. c	3. a	4. d	5. c	6. d	7. c	8. b
Exercise	2(K)						
1. b	2. b	3. d					

ADDITIONAL QUESTION BANK

1.	Solving equation	x^{2} - (a+b)x+ab=0 at	re, value(s) of x	
	(A) <i>a, b</i>	(B) <i>a</i>	(C) <i>b</i>	(D) None
2.	Solving equation	$x^2 - 24x + 135 = 0$ ar	e, value(s) of x	
	(A) 9, 6	(B) 9, 15	(C) 15, 6	(D) None
3.	If $\frac{x}{b} + \frac{b}{x} = \frac{a}{b} + \frac{a}{b}$	$\frac{b}{a}$ the roots of the e	quation are	
	(A) $a, b^2 / a$	(B) $a^2, b/a^2$	(C) $a^2, b^2/a$	(D) a, b ²
4.	Solving equation	$\frac{6x+2}{4} + \frac{2x^2-1}{2x^2+2} = \frac{1}{2x^2+2}$	$\frac{0x-1}{4x}$ we get roots as	
	(A) ±1	(B) +1	(C)-1	(D) 0
5.	Solving equation	$3x^2 - 14x + 16 = 0$	ve get roots as	
	(A) ±1	(B) 2 and $\frac{8}{3}$	(C) 0	(D) None
6.	Solving equation	$3x^2 - 14x + 8 = 0$ W	e get roots as	
	(A) ±4	(B) ±2	(C) 4 2/3	(D) None
7.	Solving equation	$(b-c)x^2 + (c-a)x +$	a-b)=0 following root	ts are obtained
	(A) $\frac{a-b}{b-c}$, 1	(B) (a-b) (a-c) , 1	(C) $\frac{b-c}{a-b}$, 1	(D) None
8.	Solving equation	$7\sqrt{\frac{x}{1-x}} + 8\sqrt{\frac{1-x}{x}} = 15$	5 following roots are o	btained
	(A) $\frac{49}{50}, \frac{64}{65}$	(B) $\frac{1}{50}, \frac{1}{65}$	(C) $\frac{49}{50}, \frac{1}{65}$	(D) $\frac{1}{50}, \frac{64}{65}$
9.	Solving equation	$6 \left[\sqrt{\frac{x}{1-x}} + \sqrt{\frac{1-x}{x}}\right]$	$\begin{bmatrix} x \\ - \end{bmatrix} = 15$ following root	s are obtained
	(A) $\frac{4}{13}, \frac{9}{13}$	(B) $\frac{-4}{13}, \frac{-9}{13}$	(C) $\frac{4}{13}, \frac{5}{13}$	(D) $\frac{6}{13}, \frac{7}{13}$
10.	Solving equation	$z^2 - 6z + 9 = 4\sqrt{z^2 - 6z^2}$	6z + 6 following roots	are obtained
	(A) $3 + 2\sqrt{3}, 3 - 2\sqrt{3}$	<u>√3</u> (B) 5, 1	(C) all the above	(D) None

21. If
$$\frac{x-bc}{d+c} + \frac{x-ca}{c+a} + \frac{x-ab}{a+b} = a+b+c$$
 the value of x is
(A) $a^2+b^2+c^2$ (B) $a(a+b+c)$ (C) $(a+b)(b+c)$ (D) $ab+bc+ca$
22. If $\frac{x+2}{x+2} - \frac{x-2}{x+2} = \frac{x+1}{x+3} \frac{x+3}{x-3}$ then the values of x are
(A) $0, \pm \sqrt{6}$ (B) $0, \pm \sqrt{3}$ (C) $0, \pm 2\sqrt{3}$ (D) None
23. If $\frac{x-a}{b} + \frac{x-b}{a} = \frac{b}{x-a} + \frac{a}{x-b}$ then the values of x are
(A) $0, (a+b)(a-b)$ (B) $0, (a+b), \frac{a^2+b^2}{a+b}$ (C) $0, (a-b) \frac{a^2+b^2}{a+b}$ (D) $\frac{a^2+b^2}{a+b}$
24. If $\frac{x+a^2-b^2}{c^2} + \frac{c^2}{x-a^2-b^2} = 2$ the value of is
(A) $a^2+b^2+c^2$ (B) $-a^2-b^2-c^2$ (C) $\frac{1}{a^2+b^2+c^3}$ (D) $-\frac{1}{a^2+b^2+c^2}$
25. Solving equation $\left(x-\frac{1}{x}\right)^2 + 6x + \frac{1}{x} + 12 = 0$ we get roots as follows
(A) 0 (B) 1 (C) -1 (D) None
26. Solving equation $\left(x-\frac{1}{x}\right)^2 - 5\left(x+\frac{1}{x}+2\right) + 18 = 0$ we get roots as follows
(A) 0 (B) 1 (C) -1 (D) $-2\pm\sqrt{3}$
27. Solving equation $2\left(x-\frac{1}{x}\right)^2 - 5\left(x+\frac{1}{x}+2\right) + 18 = 0$ we get roots as under
(A) 0 (B) 1 (C) -1 (D) $-2\pm\sqrt{3}$
28. If α β are the roots of equation $x^2-5x+6=0$ the equation with roots $(α + β)$ and $(α - β)$ is
(A) $x^2-6x+5=0$ (B) $2x^2-6x+5=0$ (C) $2x^2-5x+6=0$ (D) $x^2-5x+6=0$
29. If α β are the roots of equation $x^2-5x+6=0$ the equation with roots $(α+β)$ and $(α - β)$ is
(A) $x^2-9x+99=0$ (B) $x^2-18x+90=0$ (C) $x^2-18x+77=0$ (D) None

MATHS

— —

2.41

42.	Solving $9x+3y-4z=3$ $x+y-z=0$ and $2x-5y-4z=-20$ following roots are obtained				
	(A) 2, 3, 4	(B) 1, 3, 4	(C) 1, 2, 3	(D) None	
43.	Solving x+2y+2z= (A) 2, 1, -2 and -2, (C) only 2, 1, -2	0 3x-4y+z=0 and x -1, 2	$x^{2}+3y^{2}+z^{2}=11$ followi (B) 2, 1, 2 and -2, -1, (D) only -2, -1, 2	ng roots are obtained -2	
44.	Solving x^3-6x^2+11	x-6=0 we get the following	lowing roots		
	(A) -1, -2, 3	(B) 1, 2, -3	(C) 1, 2, 3	(D) -1, -2, -3	
45.	Solving $x^3 + 9x^2 - x - 9x^2 -$	9=0 we get the follow	ving roots		
	(A) ±1, -9	(B) ±1, ±9	(C) ±1, 9	(D) None	
46.	It is being given $x^3-12x^2+47x-60=0$	that one of the roo we get the followin	ots is half the sum o g roots:	of the other two solving	
	(A) 1, 2, 3	(B) 3, 4, 5	(C) 2, 3, 4	(D) -3, -4, -5	
47.	Solve x ³ +3x ² -x-3= (A) -1, 1, 3	0 given that the root (B) 1, 2, 3	ts are in arithmetical p (C) -3, -1, 1	rogression (D) -3, -2, -1	
48.	Solve $x^3 - 7x^2 + 14x - 4x^2 + 14x^2 + 14x^2$	8=0 given that the re	oots are in geometrical	progression	
	(A) ½, 1, 2	(B) 1, 2, 4	(C) ¹ / ₂ , -1, 2	(D) -1, 2, -4	
49.	Solve $x^{3}-6x^{2}+5x+1$	2=0 given that the p	product of the two roo	ts is 12	
50.	(A) 1, 3, 4 Solve x^3-5x^2-2x+2	(B) -1, 3, 4 4=0 given that two o	(C) 1, 6, 2 of its roots being in the	(D) 1, -6, -2 e ratio of 3:4	
	(A) -2, 4, 3	(B) -1, 4, 3	(C) 2, 4, 3	(D) -2, -4, -3	
51.	The points (-3 4), (2	2, 4) and (1, 2) are the	e vertices of a triangle	which is	
	(A) right angled	(B) isosceles	(C) equilateral	(D) other	
52.	The points (2, 3), (-	5, 2) and (-6, -9) are t	the vertices of a triang	le which is	
	(A) right angled	(B) isosceles	(C) equilateral	(D) other	
53.	The points (2, 3), (-	5, 2) and (-4, 9) are th	ne vertices of a triangl	e which is	
	(A) right angled	(B) isosceles	(C) equilateral	(D) other	
54.	The points (2, 7), (5	5, 3) and (-2, 4) are th	e vertices of a triangle	e which is	
	(A) right angled	(B) isosceles	(C) equilateral	(D) other	
55.	The points (1, -1) (. (A) right angled	$-\sqrt{3}, -\sqrt{3}$ and (-1, 1) (B) isosceles	are the vertices of a tr (C) equilateral	iangle which is (D) other	

56.	The points (2, -1) (-2, 3) (3, 4) and (-3, -2) are the vertices of a					
	(A) square	(B) rhombus	(C) parallelogram	(D) rectangle		
57.	The points $\left(\frac{1}{2}, -\sqrt{3}\right)$	$(\sqrt{3/2}, \sqrt{3/2}, \sqrt{2}) (-\sqrt{3/2}, \sqrt{2})$	$\sqrt{\frac{3}{2}}$) and $(\sqrt{\frac{3}{2}}, -\frac{1}{2})$ a	are the vertices of a triangle		
	(A) square	(B) rhombus	(C) parallelogram	(D) rectangle		
58.	The points $(2, -2)$ (-	(1, 1) (8, 4) and (5, 7)	are the vertices of a	(-)		
	(A) square	(B) rhombus	(C) parallelogram	(D) rectangle		
59.	The points (2, 1) (3,	3) (5, 2) and (6, 4) and	re the vertices of a			
	(A) square	(B) rhombus	(C) parallelogram	(D) rectangle		
60.	The co-ordinates of	the circumcentre of	a tringle with vertices	(3 -2) (-6 5) and (4 3) are		
	(A) $\left(-\frac{3}{2}, \frac{3}{2}\right)$	(B) $(3/2, -3/2)$	(C) (-3, 3)	(D) (3, -3)		
61.	The centroid of a tr	iangle with vertices (1, -2) (-5, 3) and (7, 2)	is given by		
	(A) (0, 0)	(B) (1, -1)	(C) (-1, 1)	(D) (1, 1)		
62.	The ratio in which	the point (11, -3) divi	des the joint of points	(3, 4) and (7, 11) is		
	(A) 1:1	(B) 2:1	(C) 3:1	(D) None		
63.	The area of a triang	le with vertices (1, 3)) (5, 6) and (-3, 4) in te	erms of square units is		
	(A) 5	(B) 3	(C) 8	(D) 13		
64.	The area of a triang	le with vertices (0, 0) (1, 2) and (-1, 2) is			
	(A) 2	(B) 3	(C) 1	(D) None		
65.	The area of the trian	ngle bounded by the	lines $4x+3y+8=0 x-y$	+2=0 and 9x-2y-17=0 is		
	(A) 18	(B) 17.5	(C) 17	(D) None		
66.	The area of the tria	ngle with vertices (4,	5) (1, -1) and (2, 1) is			
	(A) 0	(B) 1	(C) -1	(D) None		
67.	The area of the tria	ngle with vertices (-3	, 16) (3, -2) and (1, 4)	is		
	(A) 0	(B) 1	(C) -1	(D) None		
68.	The area of the tria	ngle with vertices (-1	, 1) (3, -2) and (-5, 4) i	S		
	(A) 0	(B) 1	(C) -1	(D) None		
69.	The area of the tria	ngle with vertices (p,	q+r) (q , $r+p$) and (r , p	<i>p+q</i>) is		
	(A) 0	(B) 1	(C) -1	(D) None		

2.44

_				Contraction of the second seco				
70.	The area of the quadrilateral with vertices (1, 7) (3, -5) (6, -2) and (-4, 2) is							
	(A) 50	(B) 55	(C) 56	(D) 57				
71.	The centroid of the triangle with vertices $(p-q, p-r)(q-r, q-p)$ and $(r-p, r-q)$ is located at							
	(A) (1, 1)	(B) (-1, 1)	(C) (1, -1)	(D) the origin				
72.	A lotus over a pond is 1" above the water level. With cool breeze it immersed 7" apart. The depth of the pond in terms of inches is							
	(A) 25	(B) 24	(C) 26	(D) None				
73.	Points $(p, 0)$ $(0, q)$ a	Points $(p, 0)$ $(0, q)$ and $(1, 1)$ are collinear if						
	(A) $\frac{1}{p} + \frac{1}{q} = 1$	(B) $\frac{1}{p} - \frac{1}{q} = 1$	(C) $\frac{1}{p} + \frac{1}{q} = 0$	(D) $\frac{1}{p} - \frac{1}{q} = 0$				
74.	The gradient or slope of the line where the line subtends an angle q with the X-axis is							
	(A) Sin θ	(B) Cos θ	(C) Tan θ	(D) Cosec θ				
75.	The equation of the	e line passing throug	h (5, -3) and parallel t	o the line is				
	(A) 2x-3y+19=0	(B) 2x-3y-14=0	(C) 3x+2y-19=0	(D) 3x+2y+14=0				
76.	The equation of the is	e line passing through	(5, -3) and perpendicu	alar to the line $2x-3y+14=0$				
	(A) 3x+2y-9=0	(B) 3x+2y+14=0	(C) 2x-3y-9=0	(D) 2 x-3y-14=0				
77.	The orthocenter of	the triangle bound b	y lines 3x-y=9 x-y=5	and 2x-y=8 is				
	(A) (0, 0)	(B) (-6, 1)	(C) (6, -1)	(D) (-6, -1)				
78.	The equation of the line passing through points $(1, -1)$ and $(-2, 3)$ is given by							
	(A) $4x+3y-1=0$	(B) 4x+3y+1=0	(C) 4 x -3 y -1=0	(D) 4x-3y+1=0				
79.	The equation of the line passing through (2, -2) and the point of intersection of $2x+3y-5=0$							
	and 7x-5y-2=0 is							
	(A) 3 x-y- 4=0	(B) 3x+y-4=0	(C) $3x+y+4=0$	(D) None				
80.	The equation of the line passing through the point of intersection of $2x+3y-5=0$ and							
	7x-5y-2=0 and parallel to the lines $2x-3y+14=0$ is							
	(A) 2x-3y+1=0	(B) 2x-3y-1=0	(C) 3x+2y+1=0	(D) 3x+2y-1=0				
81.	The equation of the line passing through the point of intersection of $2x+3y-5=0$ and							
	7x-5y-2=0 and perpendicular to the lines $2x-3y+14=0$ is							
	(A) 3x+2y+5=0	(B) 3x+2y-5=0	(C) 2x-3y+5=0	(D) 2x-3y-5=0				

MATHS

2.45

82.	The lines $x-y-6=0$,	6x+5y+8=0 and 4x	x-3y-20=0 are				
	(A) Concurrent		(B) Non Concurrent				
	(C) Perpendicular t	o each other	(D) Parallel to each o	other			
83.	The lines $2x-y-3=0$	3x-2y-1=0 and x-3	3y+2=0 are				
	(A) Concurrent		(B) Non Concurrent				
	(C) Perpendicular te	o each othe	(D) Parallel to each o	other			
84.	The triangle bound	by the lines $y = 0, \sqrt{3}$	$\overline{3x}$ +y-2=0 and $\sqrt{3x}$ -y+	1 = 0 is			
	(A) right angled	(B) isosceles	(C) equilateral	(D) other			
85.	The equation of the	e line passing throug	h (-1 1) and subtendir	ng an angle of 45° with the			
	line 6x+5y-1=0 is						
	(A) x+11y-10=0	(B) 11x-y+12=0	(C) both the above	(D) None			
86.	The equation of the	line passing throug	h (-1, 1) and subtendir	ng an angle of 60° with the			
	line $\sqrt{3x}$ +y-1=0 is	Community of the					
			S MS N				
	(A) y-1=0	(B) $\sqrt{3x} + (\sqrt{3} + 1)$	(C) both the above	(D) None			
87.	The line joining (-8,	(3) and $(2, 1)$ and the	e line joining (6 0) and	d (11 -1) are			
) 0		c mic johning (0, 0) and	a (11, 1) are			
	(A) perpendicular		(B) parallel	(11, 1) uic			
	(A) perpendicular(C) concurrent		(B) parallel(D) intersecting to ea	ch other at the angle of 45°			
88.	(A) perpendicular(C) concurrentThe lining joining (- other for the follow	1, 1) and (2, -2) and thing value of <i>k</i>	(B) parallel(D) intersecting to eahe line joining (1, 2) and	ch other at the angle of 45° nd (2, <i>k</i>) are parallel to each			
88.	(A) perpendicular(C) concurrentThe lining joining (- other for the follow(A) 1	1, 1) and (2, -2) and thing value of <i>k</i> (B) 0	 (B) parallel (D) intersecting to ea he line joining (1, 2) and (C) -1 	ch other at the angle of 45° nd (2 <i>, k</i>) are parallel to each (D) None			
88. 89.	(A) perpendicular(C) concurrentThe lining joining (- other for the follow(A) 1The equation of the	(1, 1) and (2, -2) and the ing value of k (B) 0 second line in quest	 (B) parallel (D) intersecting to ea he line joining (1, 2) and (C) -1 ion No. (88) is 	ch other at the angle of 45° nd (2 <i>, k</i>) are parallel to each (D) None			
88. 89.	 (A) perpendicular (C) concurrent The lining joining (- other for the follow (A) 1 The equation of the (A) x+y+3=0 	1, 1) and (2, -2) and thing value of k (B) 0 second line in quest (B) $x+y+1=0$	 (B) parallel (D) intersecting to ea he line joining (1, 2) and (C) -1 ion No. (88) is (C) x+y-3=0 	ch other at the angle of 45° nd (2, <i>k</i>) are parallel to each (D) None (D) x+y-1=0			
88. 89. 90.	 (A) perpendicular (C) concurrent The lining joining (- other for the follow (A) 1 The equation of the (A) x+y+3=0 The lining joining (- to each other for the 	1, 1) and (2, -2) and this value of k (B) 0 second line in quest (B) $x+y+1=0$ -1, 1) and (2, -2) and e following value of	(B) parallel (D) intersecting to ea he line joining $(1, 2)$ and (C) -1 ion No. (88) is (C) x+y-3=0 the line joining $(1, 2)$ and <i>k</i>	ch other at the angle of 45° nd (2, <i>k</i>) are parallel to each (D) None (D) $x+y-1=0$ and (2, <i>k</i>) are perpendicular			
88. 89. 90.	 (A) perpendicular (C) concurrent The lining joining (-other for the follow (A) 1 The equation of the (A) x+y+3=0 The lining joining (-to each other for the (A) 1 	1, 1) and (2, -2) and this value of k (B) 0 second line in quest (B) $x+y+1=0$ -1, 1) and (2, -2) and e following value of (B) 0	 (B) parallel (D) intersecting to ea (D) intersecting (1, 2) and (C) -1 ion No. (88) is (C) x+y-3=0 the line joining (1, 2) and <i>k</i> (C) -1 	ch other at the angle of 45° nd (2, k) are parallel to each (D) None (D) $x+y-1=0$ and (2, k) are perpendicular (D) 3			
88.89.90.91.	 (A) perpendicular (C) concurrent The lining joining (- other for the follow (A) 1 The equation of the (A) x+y+3=0 The lining joining (- to each other for the (A) 1 The equation of the 	1, 1) and $(2, -2)$ and this is a second line in quest (B) $x+y+1=0$ -1, 1) and $(2, -2)$ and the following value of (B) 0 second line in quest	(B) parallel (D) intersecting to ea he line joining $(1, 2)$ and (C) -1 ion No. (88) is (C) x+y-3=0 the line joining $(1, 2)$ and k (C) -1 ion No. (90) is	ch other at the angle of 45° nd (2, <i>k</i>) are parallel to each (D) None (D) $x+y-1=0$ and (2, <i>k</i>) are perpendicular (D) 3			
88.89.90.91.	 (A) perpendicular (C) concurrent The lining joining (- other for the follow (A) 1 The equation of the (A) x+y+3=0 The lining joining (- to each other for the (A) 1 The equation of the (A) 1 The equation of the (A) x-y-1=0 	1, 1) and $(2, -2)$ and this value of k (B) 0 second line in quest (B) $x+y+1=0$ -1, 1) and $(2, -2)$ and the following value of (B) 0 second line in quest (B) $x-y+1=0$	(B) parallel (D) intersecting to ea he line joining $(1, 2)$ and (C) -1 ion No. (88) is (C) $x+y-3=0$ the line joining $(1, 2)$ and <i>k</i> (C) -1 ion No. (90) is (C) $x-y-3=0$	ch other at the angle of 45° nd (2, <i>k</i>) are parallel to each (D) None (D) $x+y-1=0$ and (2, <i>k</i>) are perpendicular (D) 3 (D) $x-y+3=0$			
88.89.90.91.92.	 (A) perpendicular (C) concurrent The lining joining (-other for the follow (A) 1 The equation of the (A) x+y+3=0 The lining joining (-to each other for the (A) 1 The equation of the (A) 1 The equation of the (A) x-y-1=0 A factory products respectively. The lining lining 	1, 1) and $(2, -2)$ and this is a second line in quest (B) $x+y+1=0$ 1, 1) and $(2, -2)$ and the following value of (B) 0 second line in quest (B) $x-y+1=0$ 300 units and 900 the equation of the total second line in the second line in the following value of (B) $x-y+1=0$	(B) parallel (D) intersecting to ea he line joining $(1, 2)$ and (C) -1 ion No. (88) is (C) $x+y-3=0$ the line joining $(1, 2)$ and k (C) -1 ion No. (90) is (C) $x-y-3=0$ units at a total cost of total cost line is	ch other at the angle of 45° nd (2, k) are parallel to each (D) None (D) x+y-1=0 and (2, k) are perpendicular (D) 3 (D) x-y+3=0 Rs.6800/- and Rs.10400/-			

2.46

93.	If in question No. (9 the level of	in question No. (92) the selling price is Rs.8/- per unit the break-even point will arise at ne level ofunits.					
	(A) 1500	(B) 2000	(C) 2500	(D) 3000			
94.	If instead in terms of question No. (93) if a profit of Rs.2000/- is to be earned sale an production levels have to be elevated tounits.						
	(A) 3000	(B) 3500	(C) 4000	(D) 3700			
95.	If instead in terms of maintain production	of question No. (93) i n level atu	f a loss of Rs.3000/- is units.	s budgeted the factory may			
	(A) 1000	(B) 1500	(C) 1800	(D) 2000			
96.	A factory produces equation of the tota	200 bulbs for a total l cost line is	cost of Rs.800/- and 4	00 bulbs for Rs.1200/ The			
	(A) 2x-y+100=0	(B) 2x+y+400=0	(C) 2x-y+400=0	(D) None			
97.	If in terms of quest would be Rs	tion No.(96) the facto	ory intends to produc	e 1000 bulbs the total cost			
	(A) 1400	(B) 1200	(C) 1300	(D) 1100			
98.	If an investment of earning Rs.50 inves	Rs.1000 and Rs.100 tment of Rs.	yield an income of R will be required.	Rs.90 Rs.20 respectively for			
	(A) less than Rs.500) (B) over Rs.500	(C) Rs.485	(D) Rs.486			
99.	9. The equation in terms of question No.(98) is						
(A) $7x - 9y + 1100 = 0$ (B) $7x - 90y + 1000 = 0$							
	(C) $7x - 90y + 1100$	(D) 7x - 90y - 1100 =	= 0				
100. If an investment of Rs.60000 and Rs.70000 respectively yields an income of Rs.5750 Rs.6500 an investment of Rs.90000 would yield income of Rs							
	(A) 7500	(B) 8000	(C) 7750	(D) 7800			
101	. In terms of questior	n No.(100) an investm	ent of Rs.50000 would	yield income of Rs			
	(A) exactly 5000	(B) little over 5000	(C) little less than 50	00 (D) at least 6000			
102	102. The equation in terms of question No.(100) is						
	(A) $3x + 40y + 25,00$	0 = 0	(B) $3x - 40y + 50,000$	= 0			
	(C) $3x - 40y + 25,000$	0 = 0	(D) 3x - 40y - 50,000	= 0			

— — |

_ _ _ _ _ _ _ _

ANS	WE	RS									
1)	А	18)	А	35)	А	52)	D	69)	А	86)	С
2)	В	19)	В	36)	А	53)	В	70)	С	87)	В
3)	А	20)	А	37)	В	54)	А, В	71)	D	88)	А
4)	А	21)	D	38)	С	55)	С	72)	В	89)	С
5)	В	22)	D	39)	А	56)	В	73)	А	90)	D
6)	С	23)	D	40)	А	57)	А	74)	С	91)	В
7)	А	24)	А	41)	А	58)	D	75)	А	92)	С
8)	А	25)	В	42)	С	59)	С	76)	А	93)	С
9)	А	26)	D	43)	А	60)	А	77)	В	94)	В
10)	С	27)	D	44)	С	61)	D	78)	А	95)	А
11)	А	28)	А	45)	A	62)	B	79)	В	96)	С
12)	С	29)	С	46)	В	63)	Q A	80)	А	97)	А
13)	А	30)	А	47)	C	(64)	A	81)	В	98)	D
14)	В	31)	С	48)	В	65)	В	82)	А	99)	С
15)	С	32)	А	49)	B	66)	A	83)	В	100)	В
16)	А	33)	А	50)	A	1 367) and	A	84)	С	101)	А
17)	D	34)	В	51)	D	68)	A	85)	С	102)	В

2.48